

 examplepackage_cubeide_drawtextandimages_V001
 1 of 5

Example Package: Drawing Text and Images

E
x
a
m

p
le

 P
a
c
k
a
g
e
:
D

ra
w

 t
e
x
t

a
n
d
 i
m

a
g
e
s
 C

u
b
e
ID

E

A
u
th

o
r:

 M
IG

A
 /
 1

0
.1

1
.2

0
2
1

0. Before you start

This document will give you an overview of the source code for the example package Drawing
Text and Images. Before you can work with it you need to set up your working environment as
explained in the document “examplepackage_cubeide_gettingstarted”. Make sure you have
read this document beforehand and executed all the steps to configure your STM32CubeIDE.

For a more detailed explanation of how the microcontroller works, please refer to the
STM32F429 Reference Manual (RM0090) by STMicroelectronics.

1. Introduction

In this example package we will use basic functions to draw different items on the display and
use the touch input controller event to draw icons on the position we touched the display.
Additional to lines and rectangles, we will draw complete images and write text. The display
interface of the STM32F429 microcontroller can work with two layers, which can be merged
together to get the final output. But we will only use one layer. Each layer has two memory
buffers. You can select in your code, which one shall be the active one. So, while one buffer
is displayed, you can fill the other buffer with new image data and switch buffer. These buffers
are located on the external SDRAM.

Topic: Drawing Text and Images CubeIDE
Author: MIGA
Date: 10.11.2021

 examplepackage_cubeide_drawtextandimages_V001
 2 of 5

Example Package: Drawing Text and Images

E
x
a
m

p
le

 P
a
c
k
a
g
e
:
D

ra
w

 t
e
x
t

a
n
d
 i
m

a
g
e
s
 C

u
b
e
ID

E

A
u
th

o
r:

 M
IG

A
 /
 1

0
.1

1
.2

0
2
1

2. Explanation of Example Code

2.1 Main function

We will start our walk through the code at the main function since this gives a perfect overview
of the steps that we will take. At the beginning, the hardware abstraction layer (HAL) and the
system clocks are initialized. Then all the peripherals are initialized. A few variables are
declared for later use.

The 3.5- and 5.0-inch displays need the pin PH6 to be set to high in order to enable the
backlight. Those two displays are recognized by the define BACKLIGHT_EN which is defined
in the global_Display_Touch_HAL.h file. After that, the display startup sequence, consisting of
filling the buffers/layers with the color white and displaying our 2 logos, is started.

Following the short delay of the display sequence the active display buffer is filled with the
color 0xFF0066FF (ARGB8888) as background. Then a few elements are drawn on the
display. Besides a rectangle, few vertical, horizontal and diagonal lines, two lines of text a
smiley face is drawn on the display.

After the canvas is filled with the elements and before the main while-loop starts the main
function retrieves the address (pointer) of the Touch Event structure, which can be used to
determine touch events on the display area. Now the while loop starts and every time the user
touches the display, a smiley is drawn around the touchpoint.

 examplepackage_cubeide_drawtextandimages_V001
 3 of 5

Example Package: Drawing Text and Images

E
x
a
m

p
le

 P
a
c
k
a
g
e
:
D

ra
w

 t
e
x
t

a
n
d
 i
m

a
g
e
s
 C

u
b
e
ID

E

A
u
th

o
r:

 M
IG

A
 /
 1

0
.1

1
.2

0
2
1

2.2 Function: DMA2D_Fill_Color

This function fills the whole screen with a single color. The color parameter is a 32-bit integer
in an ARGB-format (alpha value, red, green, blue). With layer and buffer you specify which
buffer of which layer you want to fill with the color. The parameters can be Layer_1 or Layer_2
and Buffer_1 or Buffer_2. Those are macros which represent the number 0 or 1. You can see,
how these parameters affect the output memory address in line 147. The waitForVsync value,
determines whether to wait for vertical sync of the display or not. If true, the display waits until
the LTDC_CDSR_HSYNC bit is in reset state, which signals the start of the vertical sync.

2.3 Function: DMA2D_Draw_FilledRectangle

This function draws a filled rectangle with a given width, height and color at a specified position.
You may notice, that only those pixels which belong to the rectangle are being changed, while
the rest of the display will still be filled with the previous image. This is because of how the x-
and y-position are used to calculate the output memory address. Additionally, we use the
length of the rectangle to determine the number of pixels, that shall be filled, in every line and
the offset between two consecutive lines. The height of the rectangle is used for the number
of lines, which shall be drawn. The waitForVsync value, determines whether to wait for vertical
sync of the display or not. If true, the display waits until the LTDC_CDSR_HSYNC bit is in reset
state, which signals the start of the vertical sync.

 examplepackage_cubeide_drawtextandimages_V001
 4 of 5

Example Package: Drawing Text and Images

E
x
a
m

p
le

 P
a
c
k
a
g
e
:
D

ra
w

 t
e
x
t

a
n
d
 i
m

a
g
e
s
 C

u
b
e
ID

E

A
u
th

o
r:

 M
IG

A
 /
 1

0
.1

1
.2

0
2
1

2.4 Function: DMA2D_write_string

This function writes a string. You must give the position, the color and the font for the text you
want to write. Since the letters have a transparent background, you can use another layer and
another buffer to change the background of your text. The font is stored in a tFont struct. This
struct contains an array of addresses to another array, which stores each pixel of the letter to
be drawn. You can see the structure of those arrays in e.g., src/fonts/Courier_New.c. The
waitForVsync value, determines whether to wait for vertical sync of the display or not. If true,
the display waits until the LTDC_CDSR_HSYNC bit is in reset state, which signals the start of
the vertical sync.

In this example package we provide the font Courier New in normal and italic with a size of 26
pixels. If you want to use another font family or another size you have to generate your own
font files. Fortunately, you don’t have to do it all by yourself. We recommend the free tool “lcd-
image-converter” by riuson (https://sourceforge.net/projects/lcd-image-converter/), which can
automatically generate a C file with the chosen font.

Note: You have to include #include "driver/d_Fonts.h" in order to have the tFont typedef
available in your font file.

https://sourceforge.net/projects/lcd-image-converter/

 examplepackage_cubeide_drawtextandimages_V001
 5 of 5

Example Package: Drawing Text and Images

E
x
a
m

p
le

 P
a
c
k
a
g
e
:
D

ra
w

 t
e
x
t

a
n
d
 i
m

a
g
e
s
 C

u
b
e
ID

E

A
u
th

o
r:

 M
IG

A
 /
 1

0
.1

1
.2

0
2
1

2.5 Drawing Lines

Our driver also implements three functions to draw a line.

• DMA2D_Draw_Y_Line

• DMA2D_Draw_X_Line

• DMA2D_Draw_Line

The first two functions are basically the same as DMA2D_Draw_FilledRectangle since
horizontal and vertical lines are like thin rectangles. The last function (DMA2D_Draw_Line)
draws a line between any start- and endpoint.

2.6 Function: DMA2D_Draw_Image

The last function, we want to introduce to you, is the function DMA2D_Draw_Image which can
be used to draw any pixel image. Similar to fonts, the pixel image must be stored in an array
of (A)RGB-pixels. With alpha and alpha_mode you can individually change the alpha value for
a whole image. When you choose the alpha mode DMA2D_REPLACE_ALPHA, the alpha values for
each pixel in your image will be replaced with the parameter alpha. If you want to keep the
alpha values of your image file, you need to choose the mode DMA2D_NO_MODIF_ALPHA. The
third mode, DMA2D_COMBINE_ALPHA, replaces all alpha values in the image with the original value
multiplied with the parameter alpha divided by 255. The pixel array of the image and the
dimensions of the image are stored in a tImage struct. The according C file can again be
generated with the free tool “lcd-image-converter”. Take care, that the size of the image you
want to draw doesn’t exceed the dimensions of your display.
The waitForVsync value, determines whether to wait for vertical sync of the display or not. If
true, the display waits until the LTDC_CDSR_HSYNC bit is in reset state, which signals the
start of the vertical sync.

