

examplepackage_cubeide_touchuart_V002 1 of 4

Example Package: Touch Input and UART

E
x
a
m

p
le

 P
a
c
k
a
g
e
:
T

o
u
c
h
 U

A
R

T
 C

u
b
e
ID

E

A
u
th

o
r:

 P
A

R
A

 /
 3

0
.1

1
.2

0
2
1

0. Before you start

This document will give you an overview of the source code for the example package Touch
UART. Before you can work with it you need to set up your working environment as explained
in the document “examplepackage_cubeide_gettingstarted”. Make sure you have read this
document beforehand and executed all the steps to configure your STM32CubeIDE.

For a more detailed explanation of how the microcontroller works, please refer to the
STM32F429 Reference Manual (RM0090) by STMicroelectronics.

1. Introduction

In this example package we will work with the touch panel of our display module, which is
mounted on top of the LCD-module. The touch panel has its own control board which is
connected to the microcontroller via I²C. When you touch the display, you can get the position
of this touch event. The same applies to a release event. This information, the position and the
type of event, is then sent over UART to the on-board FTDI-chip, which converts the data input
to the USB-format and sends the data through the USB-Type-B socket to a connected PC.

2. Additional Required Software

2.1 FT_PROG

You may or may not need to configure the FTDI-
chip. To make sure, that the chip is configured
correctly you should download the free
EEPROM programming utility FT_PROG by
FTDI (https://ftdichip.com/utilities/). Connect
your computer with a USB-Type-A to USB-Type-
B cable to the display board and make sure that
the board is connected to its power supply. Start
FT_PROG and click on the button with the
magnifying glass. This will start the scan process
for connected devices. Then select Hardware
Specific -> CBUS Signals. Now check if values
for the properties C0 and C1 on the right panel

are set to GPIO. If not, change this.
Afterwards click on the lightning button and
click Program to start the programming
process. After the programming has ended
successfully, turn the power off, wait a few
seconds and turn it on again. The FTDI-chip
should now be configured properly.

2.2 PuTTY

To read the data, that is transmitted by the microcontroller to the PC, you need a program to
establish the required serial connection. We recommend the free software PuTTY for this.
When you opened the program, you first need to configure the serial connection. Click on the

Topic: Processing Touch UART CubeIDE
Author: PARA
Date: 30.11.2021

https://ftdichip.com/utilities/

examplepackage_cubeide_touchuart_V002 2 of 4

Example Package: Touch Input and UART

E
x
a
m

p
le

 P
a
c
k
a
g
e
:
T

o
u
c
h
 U

A
R

T
 C

u
b
e
ID

E

A
u
th

o
r:

 P
A

R
A

 /
 3

0
.1

1
.2

0
2
1

tab Serial and configure the serial line with the values you see in the left image below. They
should match with the values we used to initialize the UART interface of the microcontroller
(see /src/main.c -> static void MX_USART3_UART_Init(void)). Next, click on the tab Session
and choose the connection type Serial. The other parameters will change automatically. Now,
you can press Open to start the connection. A terminal window should pop up.

3. Explanation of Example Code

3.1 Main function

We will start our walk through the code at the main function since this gives a perfect overview
of the steps that we will take. At the beginning, the hardware abstraction layer (HAL) and the
system clocks are initialized. Then all the peripherals are initialized. A variable is declared for
later use.

The 3.5- and 5.0-inch displays need the pin PH6 to be set to high in order to enable the
backlight. Those two displays are recognized by the define BACKLIGHT_EN which is defined
in the global_Display_Touch_HAL.h file. After that, the display startup sequence, consisting of
filling the buffers/layers with the color white and displaying our 2 logos, is started.

Following the short delay of the display sequence the active display buffer is filled with the
color 0xFFFFFFFF (ARGB8888) as background. Now the string “Touch Me!” is drawn to the
display. In the main while-loop the application code function:

void process_touch_input(Buffer_e touchMeBuffer)

will be called continuously. This function will be explained later. Important to know is that the
touch point updating procedure is done via interrupt. You can see that in the file
Core/Src/stm32f4xx_it.c in the function void EXTI3_IRQHandler(void). This is an external
interrupt function, which will be called every time the configured pin (PD3) is low. This
corresponds to the touch controller pulling the pin low and signaling an incoming touch event.

examplepackage_cubeide_touchuart_V002 3 of 4

Example Package: Touch Input and UART

E
x
a
m

p
le

 P
a
c
k
a
g
e
:
T

o
u
c
h
 U

A
R

T
 C

u
b
e
ID

E

A
u
th

o
r:

 P
A

R
A

 /
 3

0
.1

1
.2

0
2
1

3.2 Function: process_touch_input(Buffer_e touchMeBuffer)

This function fulfills the main task of this
example code. This function will be called
repeatedly and check the touch event structure
“txy” for the current touch event. If a touch
event occurs it checks if its different from the
last one and handles the event. If an event
happens, the function will send a string via
UART.

The function will also check via AreaCheck if
the touch event was inside the upper left
quarter of the display. If true it will fill the
background buffer with green and display it,
otherwise it will fill the buffer with red and
display it.

After the user releases the display, the
touchMeBuffer will be displayed again. That is
the buffer with the string “Touch me!” written
into it.

examplepackage_cubeide_touchuart_V002 4 of 4

Example Package: Touch Input and UART

E
x
a
m

p
le

 P
a
c
k
a
g
e
:
T

o
u
c
h
 U

A
R

T
 C

u
b
e
ID

E

A
u
th

o
r:

 P
A

R
A

 /
 3

0
.1

1
.2

0
2
1

3.3 Function: send_touch_response

This function packs the information about the touch/release event, which is stored in the
touch_resp_t pointer, into a string. This string is then sent via UART to the PC.

