

examplepackage_cubeide_digitalpictureframe_V002 1 of 5

E
x
a
m

p
le

 P
a
c
k
a
g
e
:
D

ig
it
a
l
p
ic

tu
re

 f
ra

m
e
 C

u
b
e
ID

E

A
u
th

o
r:

 P
A

R
A

 /
 3

0
.1

1
.2

0
2
1

Example Package: Digital Picture Frame

0. Before you start

This document will give you an overview of the source code for the example package Digital
Picture Frame. Before you can work with it you need to set up your working environment as
explained in the document “examplepackage_cubeide_gettingstarted”. Make sure you have
read this document beforehand and executed all the steps to configure your STM32CubeIDE.

For a more detailed explanation of how the microcontroller works, please refer to the
STM32F429 Reference Manual (RM0090) by STMicroelectronics.

Note: When importing this project into your workspace you have to copy three folders
“Core”, “FATFS” and “LIBJPEG” instead of just “Core”.

1. Introduction

In this example package we will implement a digital picture frame. The microcontroller will
search an inserted micro-SD-card for JPG files. Afterwards it will decode each JPG one by
one and show the picture on the display. The current decoded image will be stored on the
external SDRAM. As stated in the Getting started document in this case you need to copy
three folders (Core, FATFS and LIBJPEG) into your CubeIDE Project in order to test it.

For the access to the SD-card we use the Open-source FatFs library by ELM-Chan with
addition from Tilen Majerle. For handling the JPGs we use the Open-source LibJPEG ibrary.

2. Explanation of Example Code

2.1 Main function

We will start our walk through the code at the main function since this gives a perfect overview
of the steps that we will take. At the beginning, the hardware abstraction layer (HAL) and the
system clocks are initialized. Then all the peripherals are initialized. A few variables are
declared for later use.

The 3.5- and 5.0-inch displays need the pin PH6 to be set to high in order to enable the
backlight. Those two displays are recognized by the define BACKLIGHT_EN which is defined
in the global_Display_Touch_HAL.h file.

disk_initialize(0) will initialize the SD-card (physical drive number 0) which is connected via
SDIO.

After that, the display startup sequence, consisting of filling the buffers/layers with the color
white and displaying our 2 logos, is started.

After the startup sequence, we start with the actual task. Since we want to display JPGs from
the SD-card, we need to find the full file paths of these. This is done with the function
search_for_jpeg(char*) which needs a 2d-array of characters as parameter. This array will be
filled with the file paths. As you can see, we assumed that there won’t be more than 20 files
and that the longest file path won’t exceed 50 characters. Search_for_jpeg() returns the
number of detected JPGs.

Topic: Digital Picture Frame CubeIDE
Author: PARA
Date: 30.11.2021

examplepackage_cubeide_digitalpictureframe_V002 2 of 5

E
x
a
m

p
le

 P
a
c
k
a
g
e
:
D

ig
it
a
l
p
ic

tu
re

 f
ra

m
e
 C

u
b
e
ID

E

A
u
th

o
r:

 P
A

R
A

 /
 3

0
.1

1
.2

0
2
1

Example Package: Digital Picture Frame

After the JPGs are found we enter the main loop. Here, we step through the file name array
and give the current name to the function paint_JPEG_file(char*, first, Buffer_e). This function
connects again to the SD-card and obtains and decodes the JPG-file with the given name and
displays it on the given buffer with or without a 10 second delay, according to the parameter
first.

examplepackage_cubeide_digitalpictureframe_V002 3 of 5

E
x
a
m

p
le

 P
a
c
k
a
g
e
:
D

ig
it
a
l
p
ic

tu
re

 f
ra

m
e
 C

u
b
e
ID

E

A
u
th

o
r:

 P
A

R
A

 /
 3

0
.1

1
.2

0
2
1

Example Package: Digital Picture Frame

2.2 Function: SDIO_search_for_jpeg(char*)

This function starts the search process for the JPG files. At first you need to mount the SD-
card. If this was successful we call the FATFS_Search function which checks if memory needs
to be allocated and then scans the SD-card file by file by calling the scan_files() function. At
the end, the SD-card will be unmounted by f_mount(0, “0”, 1).

Every time a file is detected we check the file ending to see if it is a JPG file. If it is, the file path
is written in the name array. When we reached the end of the SD-card, we will return to the
main function and the name array is filled with the file paths of all JPG files on the SD-card.

examplepackage_cubeide_digitalpictureframe_V002 4 of 5

E
x
a
m

p
le

 P
a
c
k
a
g
e
:
D

ig
it
a
l
p
ic

tu
re

 f
ra

m
e
 C

u
b
e
ID

E

A
u
th

o
r:

 P
A

R
A

 /
 3

0
.1

1
.2

0
2
1

Example Package: Digital Picture Frame

2.3 Function: paint_JPEG_file(char*)

The function paint_JPEG_file() takes the file path of the wanted picture as a parameter. It
begins with mounting the SD-card and opening the wanted file on the SD-card, which creates
a FIL object as a file handle. Then it goes on with initializing the standard error handler for the
decoding process and the decompress struct which will contain all the necessary information
and parameters for decompression. The function jpeg_stdio_src() defines our file handler as
the source for the decompression process. Next, we read the header of our wanted JPG file.
This will give us information about the dimension of the picture.

The next part of the function paint_JPEG_file() checks if the dimension of the picture is
compatible with our used display. Pictures that are too large for the display will be scaled down.
Since the LibJPEG library only supports scaling ratios 1/8, 2/8, … 16/8 we need to find the
right scaling parameters. Afterwards, the decompression is started.

examplepackage_cubeide_digitalpictureframe_V002 5 of 5

E
x
a
m

p
le

 P
a
c
k
a
g
e
:
D

ig
it
a
l
p
ic

tu
re

 f
ra

m
e
 C

u
b
e
ID

E

A
u
th

o
r:

 P
A

R
A

 /
 3

0
.1

1
.2

0
2
1

Example Package: Digital Picture Frame

After the decompression is finished, we go through the whole decompressed file line by line
with the while loop. Each loop starts by storing a line of the image in the variable buffer. Then
we read the buffer byte by byte. Since one byte represents either red, green or blue and the
structure of buffer is like red, green, blue, red, green, blue, red, …, we combine each group of
three bytes to one RGB-pixel and store the pixels on the external SDRAM. After we read the
whole decompressed file and stored all pixels, we finish the decompression task with
jpeg_finish_decompress() and jpeg_destroy_decompress() which frees all the memory that
may still be allocated by the previous decompression function. Then we close the file handler
and unmount the SD-card.

At last, we wait if the parameter delay is true for 10 seconds and send the image to the
display.

