Example Package: Digital picture frame CubelDE

Author: PARA / 30.11.2021

Example Package: Digital Picture Frame @ SYS-{'_A RT

Topic: Digital Picture Frame CubelDE
Author: PARA
Date: 30.11.2021

0. Before you start

This document will give you an overview of the source code for the example package Digital
Picture Frame. Before you can work with it you need to set up your working environment as
explained in the document “examplepackage_cubeide_gettingstarted”. Make sure you have
read this document beforehand and executed all the steps to configure your STM32CubelDE.

For a more detailed explanation of how the microcontroller works, please refer to the
STM32F429 Reference Manual (RM0090) by STMicroelectronics.

Note: When importing this project into your workspace you have to copy three folders
“Core”, “FATFS” and “LIBJPEG” instead of just “Core”.

1. Introduction

In this example package we will implement a digital picture frame. The microcontroller will
search an inserted micro-SD-card for JPG files. Afterwards it will decode each JPG one by
one and show the picture on the display. The current decoded image will be stored on the
external SDRAM. As stated in the Getting started document in this case you need to copy
three folders (Core, FATFS and LIBJPEG) into your CubelDE Project in order to test it.

For the access to the SD-card we use the Open-source FatFs library by ELM-Chan with
addition from Tilen Majerle. For handling the JPGs we use the Open-source LibJPEG ibrary.

2. Explanation of Example Code

2.1 Main function

We will start our walk through the code at the main function since this gives a perfect overview
of the steps that we will take. At the beginning, the hardware abstraction layer (HAL) and the
system clocks are initialized. Then all the peripherals are initialized. A few variables are
declared for later use.

The 3.5- and 5.0-inch displays need the pin PH6 to be set to high in order to enable the
backlight. Those two displays are recognized by the define BACKLIGHT_EN which is defined
in the global_Display_Touch_HAL.h file.

disk_initialize(0) will initialize the SD-card (physical drive number 0) which is connected via
SDIO.

After that, the display startup sequence, consisting of filling the buffers/layers with the color
white and displaying our 2 logos, is started.

After the startup sequence, we start with the actual task. Since we want to display JPGs from
the SD-card, we need to find the full file paths of these. This is done with the function
search_for_jpeg(char*) which needs a 2d-array of characters as parameter. This array will be
filled with the file paths. As you can see, we assumed that there won’t be more than 20 files
and that the longest file path won’t exceed 50 characters. Search_for_jpeg() returns the
number of detected JPGs.

examplepackage_cubeide_digitalpictureframe_V002 lof5

Example Package: Digital picture frame CubelDE

Author: PARA /30.11.2021

Example Package: Digital Picture Frame ﬁ SYSTA RT

After the JPGs are found we enter the main loop. Here, we step through the file hame array
and give the current name to the function paint_JPEG_file(char?*, first, Buffer_e). This function
connects again to the SD-card and obtains and decodes the JPG-file with the given name and
displays it on the given buffer with or without a 10 second delay, according to the parameter
first.

113= int main(void)

114

115 /* USER CODE BEGIN 1 */
117 /* USER CODE END 1 */

113 AF MU Configuration - e e e ek *f

1 /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
2 HAL_Init(};
3

12

12

12

124 /* USER CODE BEGIN Init */

125

126 /* USER CODE END Init */

127

128 /* Configure the system clock #/
129 systemClock_config();

138

131 /* USER CODE BEGIN SysInit 2/
132

123 * USER CODE END SysInit */

134

135 /* Initialize all cenfigured peripherals */

136 MX_GPIO_Init();

137 MK_DMAZD_Init(};

133 MX_FMC_Init();

139 MX_LTDC_Init();

148 MX_T201_Tnit();

141 MX_USART1_UART_Init(};
42 MX_USART3_UART_Init(};

143 MX_USARTE_UART_INit(};

144 MX_TIMZ_Init();

145 MX_SDIO_SD_Init();

145 MY _FATFS_Init();

147 MY_LTBIPEG_Init();

148 /* USER CODE BEGIN 2 */

149 /* peclaration of variables */

158 Buffer_e activeBuffer;

151 bool first = @8;

152 /* Change the first dimension of the 2D-array if more files need to be displayed */
153 uint&_t jpeg_filenames[28][58] = {8};
154

155 /* Backlight enable */

156 HAL_GPIO Writerin(GPIOE, GPIC_PIN 9, GPIO PIN_SET);
157 if (BACKLIGHT_EN) {

158 HaL_pelay(lea);

159 HAL_GPIO_Writerin(GPIOH, GPIO_FIN_E, GFIO PIN SET);

168

161 /* Initialize the s card */

152 disk_initialize(a);

163

164 /* Display the logos and save active buffer */

165 activeBuffer = Display startup_Seguence();

166 HAL_Delay(258);

167

168 /* search the sD card for jpeg files, save count of files */
169 int jpeg_count = SDIO_search_for_jpeg((char *)}jpeg_filenames);
17@ /* USER CODE END 2 */

171

172 /* Infinite loop */

173 /* USER CODE BEGIN WHILE #*/

174 while (1)

175

176 for{int i=8; i<jpeg_count; i+=){

177 /#* Invert active buffer, copy the next image into the buffer and switch buffer */
178 activeBuffer = lactiveBuffer;

179 paint_JPE:_file((char *)&jpeg_filenames[i][8], first, activeBuffer);
128 first = 1; // This adds a delay after first displayed image
181 LTDC_switch_Buffer(activeBuffer);

182

183 /* USER CODE END WHILE */

184

185 /* USER CODE BEGIN 2 */

186 3

187 /* USER CODE END 3 */

188 }

189

examplepackage_cubeide_digitalpictureframe_V002 20f5

Example Package: Digital picture frame CubelDE

Author: PARA / 30.11.2021

Example Package: Digital Picture Frame ﬁ SYS-{'_A RT

2.2 Function: SDIO_search_for_jpeg(char*)

20— int SDIO search_for_jpeg(char® name_array){

26 f# check if sD-card 1s inserted
27 if(GPIOG -» IDR & GPIO_PIN_18){
28 FRESULT res;

29 FATFS sd_fs = {8};

38 FATFS_SEARCH_t FindStruct = {8};
31 char working_buffer[288];

an

33 [/fMount SO card

34 res = f_mount(&sd_fs, "e", 1);
35

36 if(res == FR_OK)}{

37 FATFS_Search("/", working_buffer, 5@, &FindStruct, name_array);
38 ¥

39 f_mount(e, "e", 1};

4z return FindStruct.JpegCount;

a1 1

42 else{// no sD-card detected

43 return 8;

2}

mn

by

|
i

This function starts the search process for the JPG files. At first you need to mount the SD-
card. If this was successful we call the FATFS_Search function which checks if memory needs
to be allocated and then scans the SD-card file by file by calling the scan_files() function. At
the end, the SD-card will be unmounted by f mount(0, “0”, 1).

:f;— FRESULT FATFS_Search(char* dir, char® tmp_buffer, uint3z_t tmp_buffer_size, FATFS_SEARCH_t* FindStructure, char® tmp_name_array) {

265 uintg_t malloc_used = @;
FRESULT res;

68 /* Reset values first */
269 Findstructure->FilesCount = 8;
Findstructure->DirCount = @;

271 Findstructure->Jpeglount = @;
273 {/* Check for buffer =/
274 if (tmp_buffer == NULL} {
27s /# Try to allocate memory */
276 tmp_buffer = (char *) malloc({tmp_buffer_size};
278 /* Check for success #/
279 if (tmp_buffer == mULL) {
288 return FR_NOT_ENOUGH_CORE;
281 1
282 3
283
284 /* Check if there is a lot of memory allocated */
285 if (strlen{dir) < tmp_buffer_size} {
286 /* Reset TMP buffer */
287 tmp_buffer[@] = &;
2B88
283 /* Format path first =/
292 stropy (tmp_buffer, dir);
291
292 /#* call search functien */
293 res = scan_files{tmp_buffer, tmp_buffer_size, Findstructure, tmp_name_array};
294 T else {

: /* Not enough memory */

res = FR_NOT_ENOUGH CORE;

1

{/* Check for malloc */

if (malloc_used) {
free(tmp_buffer);

¥

/* Return result */
return res;

el

38l
82
@3
L
385
386

Every time afile is detected we check the file ending to see if it is a JPG file. If it is, the file path
is written in the name array. When we reached the end of the SD-card, we will return to the
main function and the name array is filled with the file paths of all JPG files on the SD-card.

examplepackage_cubeide_digitalpictureframe_V002 3of5

Example Package: Digital picture frame CubelDE

Author: PARA / 30.11.2021

Example Package: Digital Picture Frame ﬁ SYS-{'_A RT

2.3 Function: paint_JPEG_file(char*)

The function paint_JPEG _file() takes the file path of the wanted picture as a parameter. It
begins with mounting the SD-card and opening the wanted file on the SD-card, which creates
a FIL object as a file handle. Then it goes on with initializing the standard error handler for the
decoding process and the decompress struct which will contain all the necessary information
and parameters for decompression. The function jpeg_stdio_src() defines our file handler as
the source for the decompression process. Next, we read the header of our wanted JPG file.
This will give us information about the dimension of the picture.

G66= int paint_JPEG_file (char * filename)

67 {
68 struct jpeg_decompress_struct cinfoj
69 struct jpeg_error_mgr jerr;
8
71 FIL infile; // source file
72 FATFS =d_fs;
73 JSAMPARRAY buffer; // Output row buffer
74 int row_stride; // physical row width in output buffer
75 tTimer refTime = timer_get_time_ms();
76 FRESULT fres = f_mount(&sd_fs, "@", 1);
77 if(fres 1= FR_OK){
78 return 1;
79
8 fres = f_open(&infile, filename, FA_READ);
1 if (fres !'= FR OK) {
2 return 1;
30}

B

cinfo.err = jpeg_std_error(&jerr);
jpeg_create_decompress(&cinfo);
jpeg_stdioc_src(fcinfo, &infile);

jpeg_read_header (&cinfe, TRUE);

£ W WD 0D OGO DO 00 D0 B0 0O 0O 0D B0

WO @D A W

The next part of the function paint JPEG_file() checks if the dimension of the picture is
compatible with our used display. Pictures that are too large for the display will be scaled down.
Since the LibJPEG library only supports scaling ratios 1/8, 2/8, ... 16/8 we need to find the
right scaling parameters. Afterwards, the decompression is started.

if(cinfo.image_width > HOP cinfo.image_height > vDP){
7 float fract;
78 float width _fract = ((float)HDP)}/cinfo.image_width;

S {/ check if downscaling is needed. If so, set the parameter for decompression accordingly

9 float height_fract = ((fleat)vDrP)/cinfo.image_height;

20 if({width_fract < height fract){

31 fract = width_fract;

82 T

23 else{

g4 fract = height_fract;

a5 T

37 {/only supported scaling ratios are M/2 with all M from 1 to 16
28 if(fract »= 7.8/8){

9 cinfo.scale_num = 7;

¥
1 else if(fract »>= 6.8/8)}{
cinfo.scale_num = &;

¥
g else if(fract »= 5.8/8){
5 cinfo.scale_num = 5;

¥
else if(fract »>= 4.8/8)}{

2 cinfo.scale_num = 4;
1 else if(fract »>= 3.8/8){
181 cinfo.scale_num = 3;
182
183 else if(fract »>= 2.8/8)}{
led cinfo.scale_num = 2;
185
186 else if(fract »>= 1.8/8){
187 cinfo.scale_num = 1;
188 T
19 else{ // jpeg is tooc large to be shown on this displa)
118 return 2;
111 T
112 cinfo.scale_denocm = 2;
113 T

examplepackage_cubeide_digitalpictureframe_V002 4 0of 5

Example Package: Digital picture frame CubelDE

Author: PARA / 30.11.2021

Example Package: Digital Picture Frame

ESYSZART

After the decompression is finished, we go through the whole decompressed file line by line
with the while loop. Each loop starts by storing a line of the image in the variable buffer. Then
we read the buffer byte by byte. Since one byte represents either red, green or blue and the
structure of buffer is like red, green, blue, red, green, blue, red, ..., we combine each group of
three bytes to one RGB-pixel and store the pixels on the external SDRAM. After we read the
whole decompressed file and stored all pixels, we finish the decompression task with
jpeg_finish_decompress() and jpeg_destroy decompress() which frees all the memory that
may still be allocated by the previous decompression function. Then we close the file handler
and unmount the SD-card.

145
146
147
148
149
158
151

152

row_stride = cinfo.output_width * cinfo.output_components;

buffer = (*cinfo.mem-»alloc_sarray)
((j_common_ptr) &cinfo, JPOOL_IMAGE, row_stride, 1);

int rgb_ctr;
int pixel ctr = @;
uint32_t pixel = 8;
uint32_t image_data_addr = 28x{2A20888;
while (cinfo.cutput_scanline < cinfo.output_height) {
jpeg _read_scanlines(&cinfo, buffer, 1);
rgb_ctr = @;
for(int i=8; i<row_stride; is++){
uint32_t temp = (uint3z_t)*(*buffer+i};
switchi{rgh_ctr}{
case @: pixel = temp<<ls;
rgb_ctr+s;
break;
case 1: pixel |= temp<<8;
rgb_ctr+s;
break;
case 2: pixel |= temp;
pixel = (pixel (Bxff << 24));

memcpy((wold *)}image_data_addr+pixel ctr*4,(vold *) &pixel, (size_t)} 4);

pixel ctre+;
rgb_ctr = &;
break;

3
b

jpeg_finish_decompress({&cinfo);
jpeg_destroy decompress{&cinfo);
f_close(&infile);

f_mount(e, "e", 1);

{4 by

te

per pixel...

At last, we wait if the parameter delay is true for 10 seconds and send the image to the

display.

153 if({delay}{

154 while(HAL_GetTick()-refTime < 12288){}

155

156 pMa2r_Fill_celor(@xFFFFFFFF, Laver_1, displayBuffer, true);

157 DMA2D_Draw_Image((HDP-cinfo.output_width)/2, (VDP-cinfo.output_height)/2, cinfo.output_width, cinfo.output_height,
158 @xFF, DMA2D_REPLACE_ALPHA, (uint32_t)image_data_addr, CM_ARGBS38Z, Layver_1, displayBuffer, false):

159

examplepackage_cubeide_digitalpictureframe_V002

50f5

