Echoserver_V004

Example Package: TCP
Author: PARA /17.09.2021

Example Package: TCP Echo-Server @ SYS-{'_A RT

Topic: TCP Echo-Server
Author: PARA
Date: 17.09.2021

0. Before you start

This document will give you an overview of the source code for the example package TCP
Echo-Server. For a more detailed explanation of how the microcontroller works, please refer
to the STM32F429 Reference Manual (RM0090) and the description of STM32F4 HAL drivers
(UM1725) provided by STMicroelectronics.

In this example you will work with the STM32CubelDE by STMicroelectronics and use the HAL
Library. Therefore, you need to install STM32CubelDE.

After installation, open the IDE and create a new project from existing configuration file (.ioc).

Software_CubelDE_Testworkspace - STM32CubelDE
File Edit Source Refactor Navigate Search Project Run Window Help
New Alt+Shift+N > [T Makefile Project with Existing Code
Open File.. [C/Css Project
(", Open Projects from File System... STM32 Project
Recent Files > STM32 Project from an Existing STM32CubeMX Configuration File (.ioc)
o Project...

Ctrl+Shift+W | &5 Source Folder
Folder
¢/ Source File
o5 (B HeaderFile
Revert File from Template

@ Class
=
Rename... (L Other.. N Ctrl+sN

$ Refresh F3
Convert Line Delimiters To

Print

L= Import..
| Exportu.

Properties Alt+Enter

Switch Workspace
Restart
Exit

In the next window, browse for the ioc-file “ExamplePackage_TCP_Echoserver.ioc”, which is
provided with the example packages file, as the STM32CubeMX .ioc file and choose a project
name. After pressing Finish, STM32CubelDE will generate the project.
Next, open the project folder in your file explorer and replace the directories Core,
Drivers, LWIP and Middlewares with the directories of the same name provided in the
example package. After refreshing your project in CubelDE, you should be able to build
and flash the source code.

The building and flashing process is similar to the System Workbench IDE by
OpenSTM32. So make sure that you have read the documentation to the
“‘ExamplePackage_GettingStarted”. Note, that the display size is this time specified in
the file Core/Inc/global_Display _Touch_ HAL.h.

1. Introduction

In this example package we will implement a simple echo-server. A TCP-connection to the
display board will be established and the messages that you send to the board will be given
back. To connect your display board via ethernet to a network you need the Ethernet-
Breakout-Board provided by EBS-SYSTART.

For establishing the websocket on the STM32-microcontroller we use the open-source TCP/IP
stack IwlP, which is implemented as third party middleware inside the CubelDE.

ExamplePackage_TCP_Echoserver_V004 lof7

https://www.st.com/en/development-tools/stm32cubeide.html

Echoserver_V004

Example Package: TCP
Author: PARA /17.09.2021

Example Package: TCP Echo-Server ﬁ SYS-{'-A RT

1.1 Connecting to the Webserver

After successfully flashing the code and connecting the display board to your local network
with the Ethernet-Breakout-Board, you can establish a TCP connection with it. We recommend
the free software SocketTest by akshath to test your newly created server.

Open the application and go to the tab Client. Here you need to enter the IP Address of the
webserver and the port number. Those can be chosen by you and changed in the source code
of the example package.

® SocketTestv 3.0.0 — d X

® Client l @ Server * Udp @ About

Connect To
IP Address [192.168.1.65 | e
Port [4949 | port | Connect | [] Secure

SocketTestv 3.0

Connected To = NONE =
Conversation with host

Send

Message Clear

Save
Gear |

Press Connect and you should be able to send messages to the display board, which will be
echoed back.

& SocketTest v 3.0.0 — O .

@ Client | e Server | = Udp | = About

Connect To
IP Address 192.168.1.65
Port 4949 Port Disconnect | [] Secure

SockeiTestv 3.0

Connected To = 192.168.1.65 [192.168.1.65] =
Conversation with host

S Hello Waorld!
Hello World!

Send Saye
Message | | send —

ExamplePackage_TCP_Echoserver_V004 20f7

https://sourceforge.net/projects/sockettest/

Echoserver_V004

Example Package: TCP
Author: PARA /17.09.2021

Example Package: TCP Echo-Server ﬁ SYS-{’-A RT

2. Explanation of Example Code

2.1 Main function

dmt maingwaid)

Resct ¢ all peripherals, Initializxe
HAL_Init(};

Systent lock_Config();

if{backlight en
HEL_Delayilad);
HAL_GPIO WritsPin(GRIH, GRIO PIN &, GPIO PIM SET);
HAL_GP10 WritePin{EP106, GR10_PIN_9, GPI0 PIM SET);

SOREM FLASH_init();

OMAZD Display_inmit();

OMAZD Fill Color(@wFFFRFFFF, Layer 1, Buffor 1);

OMAZD Draw_Image((HOP-320)/2, (MDP-240)/2, 320, 283, 255, OMAZD REPLACE ALPHA, (uinti2 t)&image_data_chssystart_loga, OMAZD_INPUT_&RGBSSEE, Layer_1, Buffer_l):
AL Dolay(saad);

OMAZD Fill Color(@xFFFFFFFF, Layer_1, Buffer_1);

OMAZD Draw Image((HDP-33a} 72, (VOP-123)/2, 384, 123, 255, OMAZD MO MODIF ALPMA, (uint32 t}&image data 2inl dizplay logo, OMAZD INPUT_ARGEEUEH, Layer 1, Buffer 1);
HAL_Delay(208a);

OMAZD Fill Color{@xFFFFFFFF, Layer 1, Buffor_1);

OMAZD write string(“1'm echoing under®, (HOP-17*1&)/2, (VOP-11-79)/2, @xFrod08d, &couricr_new, Layer 1, Buffer 1, Layer 1, Buffer_1);

OMAZD write_string(“IP: 192.158.1.55", (HOP-17*16}/2, (VOP-11-79)/2433, axFroa030d, Scouricr_now, Layer 1, Buffer_1, Layer_1, Buffer_1);

OMAZD write string(“Port: S99, (HDP-17*16)/2, (VDP-11-79)/2+56, @xFr888808, Scourier now, Layer 1, Buffer 1, Layer 1, Buffer 1);

We will start our walkthrough in the code at the main function since this gives a perfect
overview of the steps that we will take. At the beginning, the used peripherals are initialized.
HAL_Init() resets all peripherals and initializes the Flash interface and the Systick. Then, the
various clocks are configured.

Afterwards the GPIO clocks are enabled and the IwlP stack is initialized. We will later take a
closer look at this function.

Until now, we stepped through functions that are automatically generated by STM32CubelDE
according to changes you make in the ioc-file of your project. The next two initialization
functions are part of our driver packages and do the setup for the SDRAM and the display. We
need the SDRAM, because this is the location, where the data to be displayed on the screen
will be stored.

The commands from line 109 to 118 implement a short start sequence with our logos.
Afterwards the needed information to connect to the echo-server is displayed. This contains
the IP-address and the port number.

Finally, the main loop is entered. In this loop, the ethernet buffer is periodically checked for
received packages. Those will be handled as specified in the initialization of lwIP. The function

ExamplePackage_TCP_Echoserver_V004 3of7

Echoserver_V004

Example Package: TCP
Author: PARA /17.09.2021

Example Package: TCP Echo-Server ﬁ SYS-{'_A RT

sys_check_timeouts must also be called periodically in the main loop to handle all timers for
all protocols in the stack.

2.2 MX_LWIP_Init

538 /*

54 * LwIP initialization functicn

55 */

56 void MX_LWIP_Init(wvoid)

57 {

58 /* IP addresses initialization */

5o IP_ADDRESS[@] = 192;

2 IP_ADDRESS[1] = 168;

51 IP_ADDRESS[2] = 1;

52 IP_ADDRESS[3] = 65;

63 NETMASK_ADDRESS[8] = 255;

54 NETMASK_ADDRESS[1] = 255;

55 NETMASK_ADDRESS[2] = 255;

66 METMASK_ADDRESS[3] = @

67 GATEWAY_ADDRESS[@] = 192;

&8 GATEWAY ADDRESS[1] = 168;

50 GATEWAY ADDRESS[2] = 1;

78 GATEWAY ADDRESS[3] = 1;

722 /* USER CODE BEGIN IP_ADDRESSES */

73 /* USER CODE END IP_ADDRESSES */

75 /* Initilialize the LwIP stack without RTOS */

76 Iwip_init();

78 /* IP addresses initialization without DHCP (IPwva) */

79 IP4_ADDR(&ipaddr, IP ADDRESS[@], IP_ADDRESS[1], IP_ADDRESS[2], IP_ADDRESS[3]);
¢ IP4 _ADDR(&netmask, NETMASK_ADDRESS[@], NETMASK ADDRESS[1] , NETMASK_ADDRESS[2], NETMASK ADDRESS[3]);
81 IP4_ADDR(&gw, GATEWAY ADDRESS[@], GATEWAY ADDRESS[1], GATEWAY ADDRESS[2], GATEWAY ADDRESS[3]);
82

83 /* add the network interface (IPv4/IPw6) without RTOS */

54 netif_add(&gnetif, &ipaddr, &netmask, &gw, NULL, Zethernetif init, ðernet_input);
85

86 /* Registers the default network interface */

87 netif_set_default(&gnetif);

89 if (netif_is link up(&gnetif))

ag {

91 /* When the pnetif is fully ceonfigured this function must be called */
92 netif_set_up(&gnetif);

a3}

a4 else

a5 {

96 /* When the netif link is down this function must be called */

a7 netif_set_down(&gnetif);

ag }

a9

128 /* set the link callback function, this function is called on change of link status*®/
lel netif_set_link callback(&gnetif, ethernetif_update_config);

182

le3 /* Create the Ethernet link handler thread */

-

185 /* USER CODE BEGIN 3 */

1e6 tep_echoserver_init();

187 /* USER CODE END 3 */

188 }

At the beginning of this initialization function we specify the IP addresses for the network
connection of the display board. We used 192.168.1.65, but if this IP address is occupied in
your network or you just want to use another one, you can change it. Make sure to alter the
message, that will be shown on the display accordingly.

The subsequent functions are generated automatically by the CubelDE and set up the data
structures and handlers for the network interface.

Afterwards, we need to initialize the TCP server. This is done by calling tcp_echoserver_init.

ExamplePackage_TCP_Echoserver_V004 4 0of 7

Echoserver_V004

Example Package: TCP
Author: PARA /17.09.2021

Example Package: TCP Echo-Server ﬁ SYS-{'-A RT

2.3 tcp_echoserver_init

—wvoid tcp_echoserver_init{woid){
pch = tcp new();
if(pcbk !'= NULL){
err_t err = tcp_bind{pch, IP_ADDR_ANY, 4949);
if(err == ERR_OK){
peb = tep listen(pcb);
tcp_accept(pcb, accept_callback);

=] M N

[

‘ h

3 elseq

Z memp_free(MEMP_TCP_PCEB, pch);
> h

)

L R N A A O N R A F T R TR NT RN N T)
O od

1

At first, a TCP protocol control block (TCP pcb) is created. This pcb will be bound to port 4949.
Again, if you prefer another port, you can change this value. If the binding produced an error,
the memory of the pcb-object is freed. Otherwise, we set the state of the connection to LISTEN,
which means that it is able to accept incoming connections, and specify the function, which
shall be called if an incoming connection is accepted. This function will be accept_callback.

2.4 accept_callback

49= static err_t accept_callback({void *arg, struct tcp_pcb *newpch, err_t err){

58 err_t ret_err;

51 struct tep_server_struct *es;

52

53 LWIP_UNUSED_ARG{arg);

54 LWIP_UNUSED_ARG{err);

55

56 /* set pricrity for the newly accepted tgp connection ngwpch */

57 tcp_setprio(newpch, TCP_PRIO_MIN);

58

59 '* allocate structure gs to maintain tcp connection informations */

66 es = (struct tcp_server_struct *)mem_malloc(sizeof(struct tcp_server_struct));
6 if(es != NULL){

es-»state = E5 ACCEFTED;

es-»pch = newpch;

es-»retries = @;

es-»p = NULL;

/* pass newly allocated gs structure as argument to newpch */
tcp_arg(newpch, es);

e I =]

tcp_recv(newpcb, receive_callback);
tcp_err(newpch, error_callback);
tcp_pell(newpcb, poll callback, @);
ret_err = ERR_OK;

)

a
8
9
.
@
-
2
3
5

¥
else{.

close tgp connection */
tcp_server_connection_close(newpch, es);;
/* return memory error */
ret_err = ERR_MEM;

h

- -

-~

return ret_err;

Ll Pd = @ WO £d

=

One part of the accept_callback is to generate an instance of the tcp_server_struct, which will
contain the information of the TCP connection. This instance will be passed as argument to
the pcb, so that it can be accessed by the other callback functions.

The main task of the accept_callback is to specify these callback functions. In line 70 — 72 we
specify the callbacks that shall be called if new data arrives (receive_callback), if a fatal error
has occurred on the connection (error_callback) and the function that shall be called to poll the
application (poll_callback).

ExamplePackage_TCP_Echoserver_V004 50f7

Echoserver_V004

Example Package: TCP
Author: PARA /17.09.2021

Example Package: TCP Echo-Server ﬁ SYS-{'_A RT

2.5 receive_callback

In the receive function, different actions are taking place, depending on the server state. In
error cases or if the connection is closed by a remote host, the memory of the data structures,
which hold the information about the connection, will be freed.

The more interesting part is in line 125 — 160, where it is specified what shall happen with
successfully received data.

else if(es-»state == ES_ACCEPTED)

1
/* first data chunk in p->»payload */
es-»state = E5 RECEIVED;

/* store reference to incoming pbuf (chain) */
es->p = p;

[IYRS R T RN T

f* initialize LwIP tcp_sent callback function */
tcp_sent(tpcb, sent_callback);

'-|'-
B

F
WY TR WY WY FY RN VYR YRR NTRR VRN TN W WO O NI 51
s 3 c

132

136 /* send back the received data (echo) */
137 tcp_server_send(tpch, es);

4120

139 ret_err = ERR_OK;

o

141 else if (es->state == ES RECEIVED)

142 1

143 /* more data received from client and previcus data has been already sent®/
144 if(es-»p == NULL)

145 {

145 es-:*p = p;

148 /* send back received data */

149 tcp_server_send(tpch, es);

158 }

151 else

152 {

153 struct pbuf *ptr;

154

155 /* chain pbufs to the end of what we recv'ed previously */
156 ptr = es->p;

157 pbuf_chain(ptr,p);

158 }

159 ret_err = ERR_OK;

168 }

As you can see, the received data (variable p) won'’t be processed but only sent directly back.

2.6 error_callback

188= static void error_callback (void *arg, err_t err){
181 struct tcp_server_struct *es;

182

183 LWIP_UNUSED ARG(err);

134

135 es = (struct tcp_server_struct *)arg;
186 if (es != NULL)

187 {

123 f* free es structure */

189 mem_free(es);

198 }

191 }

The error callback only frees the memory of the tcp_server_struct.

ExamplePackage_TCP_Echoserver_V004 6 of 7

Echoserver_V004

Example Package: TCP
Author: PARA /17.09.2021

Example Package: TCP Echo-Server ﬁ SYS-{’-A RT

2.7 poll_callback

199= static err_t poll_callback(void *arg, struct tcp_pcb *tpch)
{

err_t ret_err;

struct tcp server_struct *es;

W ka2 ®

4

es = (struct tcp_server_struct *)arg;
if (es != NULL)
{

if (es-»p != NULL)

S M mD D D o m D ®D 55

tcp_sent(tpcb, sent_callback);
/* there is a remaining pbuf (chain) , try to send data */
tcp_server_send(tpcb, es);
¥
else
{
'* no remaining pbuf (chain)
if(es-»state == E5 CLOSING)

{ I

close tcp connection */
tcp_server_connection_close(tpcb, es);
}
}
ret_err = ERR_OK;
}
else
{
'* nothing to be done */
tcp_abort(tpch);
ret_err = ERR_ABRT;
¥

return ret_err;

Wk b= ® W~ W B Wk ®WDee -~ oW

P

[I I I I I I O I I O O I O I I~ T S T % T S S I S I S S I
= E
= ® W0 0d N

Lol Pd Pd R ORDORD ORI PRI PD PRI R

F
-

The poll function will be called, when the connection is idle (i.e. not data is either transmitted
or received). If there is still data in the tcp_server_struct, that should be sent (line 207), this will
be done. If there is nothing to do, the connection will be closed (line 219 and 227).

3. Ideas for Exercise Project

Here, we want to give you some suggestions how you could modify our example code and
make your own little project.

In our example package Processing Touch Input and UART Communication we implemented
a basic UART communication which sends the touch input data to a connected PC. You could
now implement a similar application which sends this information via Ethernet to a computer
in your network.

ExamplePackage_TCP_Echoserver_V004 7 of 7

