

examplepackage_cubeide_ble-module_V002 1 of 10

Example Package: BLE-Module

E
x
a
m

p
le

 P
a
c
k
a
g
e
:
B

L
E

-M
o
d
u
le

 C
u
b
e
ID

E

A
u
th

o
r:

 P
IG

A
 /
 3

0
.1

1
.2

0
2
1

0. Before you start

This document will give you an overview of the source code for the example package BLE-
Module. Before you can work with it you need to set up your working environment as explained
in the document “examplepackage_cubeide_gettingstarted”. Make sure you have read this
document beforehand and executed all the steps to configure your STM32CubeIDE.

For a more detailed explanation of how the microcontroller works, please refer to the
STM32F429 Reference Manual (RM0090) provided by STMicroelectronics.

1. Introduction

In this example package the BLE module which can be found on the 4.3 – inch and 5.0 – inch
display board will be put into operation. The used module is the BMD-300 manufactured by
Rigado. The example application will let you send strings via Bluetooth to the display board.
The string will then be displayed. You can also change color and position of the next string by
using specific commands.
For the connection and the sending/receiving of data via Bluetooth you need the software
LightBlue by PunchThrough, which is available for your smartphone (Android and iOS).

1.1 Using LightBlue and configuring the BMD-300

In this section you will learn, how to use the app LightBlue. Before the example code works,
you need to configure the BMD-300 module, which is also done via the app.

The screenshot in the middle is from the apple version of the app, the one on the right is from
the android version.

Topic: BLE-Module CubeIDE
Author: PARA
Date: 30.11.2021

examplepackage_cubeide_ble-module_V002 2 of 10

Example Package: BLE-Module

E
x
a
m

p
le

 P
a
c
k
a
g
e
:
B

L
E

-M
o
d
u
le

 C
u
b
e
ID

E

A
u
th

o
r:

 P
IG

A
 /
 3

0
.1

1
.2

0
2
1

Install the app from your App
Store and open it. At the
beginning you will need to scan
(pull to refresh) for the available
Bluetooth devices and search
for the BMD-300.

Obviously, the display board
has to be connected to its
power.

Note: By default, the BMD-300
device is called “RigCom”. Click
on the entry in the list to
connect to the device.

Screenshot 1.1

Screenshot 1.2

You should now see this
overview page when
successfully connected.

Screenshot 2.1

Screenshot 2.2

examplepackage_cubeide_ble-module_V002 3 of 10

Example Package: BLE-Module

E
x
a
m

p
le

 P
a
c
k
a
g
e
:
B

L
E

-M
o
d
u
le

 C
u
b
e
ID

E

A
u
th

o
r:

 P
IG

A
 /
 3

0
.1

1
.2

0
2
1

Now we need to make some
changes in the configurations,
so that the BMD300 can
communicate properly with the
STM32-Microcontroller.

At first, we will enable the pass-
through mode. This means that
the BMD300 will transmit all
received data via UART to the
connected STM32.

To enable this, you need to
scroll down to the UUID:

6E400008-B5A3-F393-E0A9-
E50E24DCCA9E

(Notice the last number before
the first minus sign)

Screenshot 3.1

Screenshot 3.2

In this menu on the iPhone, you
have to click on the Write new
value button.

In the Android Version, click on
the marked area.

(Screenshot 4.2)

Screenshot 4.1

Screenshot 4.2

examplepackage_cubeide_ble-module_V002 4 of 10

Example Package: BLE-Module

E
x
a
m

p
le

 P
a
c
k
a
g
e
:
B

L
E

-M
o
d
u
le

 C
u
b
e
ID

E

A
u
th

o
r:

 P
IG

A
 /
 3

0
.1

1
.2

0
2
1

Now the following editor opens,
where you have to enter the value
01 and click on the Done button in
the lower right corner.

In the Android Version enter the
Value 01 and click on WRITE.

Screenshot 5.1

Screenshot 5.2

As a second parameter we
need to configure the hardware
flow-control, for a correct UART
communication between
STM32 and BMD300. This
must be disabled.

Normally, this should be
disabled by default. But it’s
better to do it manually, so you
can be certain. This is done by
setting the characteristic with
UUID:

6E400006-B5A3-F393-E0A9-
E50E24DCCA9E

(Notice the last number before
the first minus sign)

Write the value 00 exactly as
you have done above and click
on Done.

Screenshot 6.1

Screenshot 6.2

examplepackage_cubeide_ble-module_V002 5 of 10

Example Package: BLE-Module

E
x
a
m

p
le

 P
a
c
k
a
g
e
:
B

L
E

-M
o
d
u
le

 C
u
b
e
ID

E

A
u
th

o
r:

 P
IG

A
 /
 3

0
.1

1
.2

0
2
1

Finally, you need to enable
notifications. This is done by
clicking on the option with the
UUID:

6E400003-B5A3-F393-E0A9-
E50E24DCCA9E

(Notice the last number before
the first minus sign)

Screenshot 7.1

Screenshot 7.2

In this menu, click on the Listen
for notifications button.

On Android, simply click on
SUBSCRIBE.

Screenshot 8.1

Screenshot 8.2

examplepackage_cubeide_ble-module_V002 6 of 10

Example Package: BLE-Module

E
x
a
m

p
le

 P
a
c
k
a
g
e
:
B

L
E

-M
o
d
u
le

 C
u
b
e
ID

E

A
u
th

o
r:

 P
IG

A
 /
 3

0
.1

1
.2

0
2
1

The core function of this
example package is to send a
string via Bluetooth to the
display board. This string will
be shown on the display. You
can send a string by clicking on
the UUID:

6E400002-B5A3-F393-E0A9-
E50E24DCCA9E

(Notice the last number before
the first minus sign)

Screenshot 9.1

Screenshot 9.2

To send a string you have to
change the Characteristic
Format to UTF-8 String.

To do that click on the Button in
the upper right corner of the
screen and change it to the
desired input format.

On Android open the Data
format option.

Screenshot 10.1

Screenshot 10.2

examplepackage_cubeide_ble-module_V002 7 of 10

Example Package: BLE-Module

E
x
a
m

p
le

 P
a
c
k
a
g
e
:
B

L
E

-M
o
d
u
le

 C
u
b
e
ID

E

A
u
th

o
r:

 P
IG

A
 /
 3

0
.1

1
.2

0
2
1

In the menu click on UTF-8
String.

Screenshot 11.1

Screenshot 11.2

To finally send a string, click on
the Write new value button.

On Android click on the marked
area on the screen.

Screenshot 12.1

Screenshot 12.2

examplepackage_cubeide_ble-module_V002 8 of 10

Example Package: BLE-Module

E
x
a
m

p
le

 P
a
c
k
a
g
e
:
B

L
E

-M
o
d
u
le

 C
u
b
e
ID

E

A
u
th

o
r:

 P
IG

A
 /
 3

0
.1

1
.2

0
2
1

Just input your text, add the
characters “\n” to the end and
press Enter.

You need to finish your
string with a new line
symbol! (\n)

Otherwise, the STM32 code is
not able to distinguish between
subsequent inputs.

Also note, that your message
should not exceed 20
characters, including the
newline symbol.

If everything has worked you
should now see the text on the
display.

Screenshot 13.1

Screenshot 13.2

examplepackage_cubeide_ble-module_V002 9 of 10

Example Package: BLE-Module

E
x
a
m

p
le

 P
a
c
k
a
g
e
:
B

L
E

-M
o
d
u
le

 C
u
b
e
ID

E

A
u
th

o
r:

 P
IG

A
 /
 3

0
.1

1
.2

0
2
1

2. Explanation of Example Code

2.1 Main function

We will start our walk through the
code at the main function since
this gives a perfect overview of
the steps that we will take. At the
beginning, the hardware
abstraction layer (HAL) and the
system clocks are initialized.
Then all the peripherals are
initialized. A few variables are
declared for later use.

The 5.0-inch display need the pin
PH6 to be set to high in order to
enable the backlight. This display
is recognized by the define
BACKLIGHT_EN which is
defined in the
global_Display_Touch_HAL.h
file. After that, the display startup
sequence, consisting of filling the
buffers/layers with the color white
and displaying our 2 logos, is
started.

Following the short delay of the
display sequence the Rigado
BMD is initialized.

Then the active display buffer is
filled with the color 0xFFFFFFFF
(ARGB8888) as background.
Now the string with the
instructions is drawn to the
display.

The font struct is initialized and
the ringbuffer is reset.

In the main loop, the UART buffer is periodically checked for a new line of input. If the new line
contains a command, which is marked by beginning with a $-symbol, a function to process the
command is called. Otherwise, the string will be displayed on the screen on the position and
in the color, that is stored in the font struct.

2.2 Rigado_BMD_300_init

This function disables the Rigado BMD 300, waits
for half a second and enables it again to be sure its
enabled.

examplepackage_cubeide_ble-module_V002 10 of 10

Example Package: BLE-Module

E
x
a
m

p
le

 P
a
c
k
a
g
e
:
B

L
E

-M
o
d
u
le

 C
u
b
e
ID

E

A
u
th

o
r:

 P
IG

A
 /
 3

0
.1

1
.2

0
2
1

2.3 process_font_command

This function is called, after we already know, that the string contains a command. The
command and its parameters are separated by spaces and therefore we use the C-library
function strtok to get each individually. The application knows only three different commands;
one to change the color of the strings, one to change the x-position and one to change the y-
position.

The commands must have the following format:

Color Command: $color R G B \n With R, G and B being numbers in the range of
0 to 255 representing the red, green and blue
values

x-Position Command: $xpos value \n With value being the number of pixel of the
horizontal start position. The range must not
exceed the display size.

y-Position Command: $ypos value \n With value being the pixel number of the vertical
start position. The range must not exceed the
display size.

Note, that each command has to end with the UTF-8 ASCII sequence “\” and “n” or
the hex value 0x0A like every message transmitted to the display board via
Bluetooth. Otherwise, the STM32 can’t distinguish between subsequent messages.

